Global Convergence of Steepest Descent for Quadratic Functions

نویسندگان

  • Zhigang Zeng
  • De-Shuang Huang
  • Zengfu Wang
چکیده

This paper analyzes the effect of momentum on steepest descent training for quadratic performance functions. Some global convergence conditions of the steepest descent algorithm are obtained by directly analyzing the exact momentum equations for quadratic cost functions. Those conditions can be directly derived from the parameters (different from eigenvalues that are used in the existed ones.) of the Hessian matrix. The results presented in this paper are new.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

Residual norm steepest descent based iterative algorithms for Sylvester tensor equations

Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

Hybrid steepest-descent method with sequential and functional errors in Banach space

Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...

متن کامل

A Modified Algorithm of Steepest Descent Method for Solving Unconstrained Nonlinear Optimization Problems

The steepest descent method (SDM), which can be traced back to Cauchy (1847), is the simplest gradient method for unconstrained optimization problem. The SDM is effective for well-posed and low-dimensional nonlinear optimization problems without constraints; however, for a large-dimensional system, it converges very slowly. Therefore, a modified steepest decent method (MSDM) is developed to dea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004